Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 655: 124072, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38561133

RESUMO

We explored the potential of overcoming the dense interstitial barrier in pancreatic cancer treatment by enhancing the uptake of hydrophilic chemotherapeutic drugs. In this study, we synthesized the squalenoyl-chidamide prodrug (SQ-CHI), linking lipophilic squalene (SQ) with the hydrophilic antitumor drug chidamide (CHI) through a trypsin-responsive bond. Self-assembled nanoparticles with sigma receptor-bound aminoethyl anisamide (AEAA) modification, forming AEAA-PEG-SQ-CHI NPs (A-C NPs, size 116.6 ± 0.4 nm), and reference nanoparticles without AEAA modification, forming mPEG-SQ-CHI NPs (M-C NPs, size 88.3 ± 0.3 nm), were prepared. A-C NPs exhibited significantly higher in vitro CHI release (74.7 %) in 0.5 % trypsin medium compared to release (20.2 %) in medium without trypsin. In vitro cell uptake assays revealed 3.6 and 2.3times higher permeation of A-C NPs into tumorspheres of PSN-1/HPSC or CFPAC-1/HPSC, respectively, compared to M-C NPs. Following intraperitoneal administration to subcutaneous tumor-bearing nude mice, the A-C NPs group demonstrated significant anti-pancreatic cancer efficacy, inducing cancer cell apoptosis and inhibiting proliferation in vivo. Mechanistic studies revealed that AEAA surface modification on nanoparticles promoted intracellular uptake through caveolin-mediated endocytosis. This nanoparticle system presents a novel therapeutic approach for pancreatic cancer treatment, offering a delivery strategy to enhance efficacy through improved tumor permeation, trypsin-responsive drug release, and specific cell surface receptor-mediated intracellular uptake.


Assuntos
Aminopiridinas , Benzamidas , Nanopartículas , Neoplasias Pancreáticas , Pró-Fármacos , Animais , Camundongos , Caveolinas/uso terapêutico , Camundongos Nus , Tripsina , Nanopartículas/química , Pró-Fármacos/química , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral
2.
Artigo em Inglês | MEDLINE | ID: mdl-38607336

RESUMO

OBJECTIVE: Firearm violence constitutes a public health crisis in the United States, but comprehensive data infrastructure is lacking to study this problem. To address this challenge, we used natural language processing (NLP) to classify court record documents from alleged violent crimes as firearm-related or non-firearm-related. MATERIALS AND METHODS: We accessed and digitized court records from the state of Washington (n = 1472). Human review established a gold standard label for firearm involvement (yes/no). We developed a key term search and trained supervised machine learning classifiers for this labeling task. Results were evaluated in a held-out test set. RESULTS: The decision tree performed best (F1 score: 0.82). The key term list had perfect recall (1.0) and a modest F1 score (0.65). DISCUSSION AND CONCLUSION: This case report highlights the accuracy, feasibility, and potential time-saved by using NLP to identify firearm involvement in alleged violent crimes based on digitized narratives from court documents.

3.
World J Clin Oncol ; 15(1): 89-114, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292658

RESUMO

BACKGROUND: A recently hypothesized cause of cell death called disulfidptosis has been linked to the expansion, emigration, and vascular rebuilding of cancer cells. Cancer can be treated by targeting the pathways that trigger cell death. AIM: To discover the long non-coding RNA of the disulfidaptosis-related lncRNAs (DRLs), prognosis clinical survival, and treat patients with colorectal cancer with medications. METHODS: Initially, we queried the Cancer Genome Atlas database to collect transcriptome, clinical, and genetic mutation data for colorectal cancer (CRC). Training and testing sets for CRC patient transcriptome data were generated randomly. Key long non-coding RNAs (lncRNAs) related to DRLs were then identified and evaluated using a least absolute shrinkage and selection operator procedure, as well as univariate and multivariate Cox regression models. A prognostic model was then created after risk scoring. Also, Immune infiltration analysis, immune checkpoint analysis, and medication susceptibility analysis were used to investigate the causes of the different prognoses between high and low risk groups. Finally, we validated the differential expression and biomarker potential of risk-predictive lncRNAs through induction using both NCM460 and HT-29 cell lines, as well as a disulfidptosis model. RESULTS: In this work, eight significant lncRNAs linked to disulfidptosis were found. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of differentially expressed genes between high- and low-risk groups from the prognostic model showed a close relationship with the immune response as well as significant enrichment in neutrophil extracellular trap formation and the IL-17 signaling pathway. Furthermore, significant immune cell variations between the high-risk and low-risk groups were seen, as well as a higher incidence of immunological escape risk in the high-risk group. Finally, Epirubicin, bortezomib, teniposide, and BMS-754807 were shown to have the lowest sensitivity among the four immunotherapy drugs. CONCLUSION: Our findings emphasizes the role of disulfidptosis in regulating tumor development, therapeutic response, and patient survival in CRC patients. For the clinical treatment of CRC, these important LncRNAs could serve as viable therapeutic targets.

4.
Int J Biol Macromol ; 257(Pt 2): 128756, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092098

RESUMO

Pancreatic cancer (PC) has a poor prognosis due to chemotherapy resistance and unfavorable drug transportation. Albumin conjugates are commonly used as drug carriers to overcome these obstacles. However, membrane-bound glycoprotein mucin 4 (MUC4) has emerged as a promising biomarker among the genetic mutations affecting albumin conjugates therapeutic window. Human serum albumin-conjugated arsenic trioxide (HSA-ATO) has shown potential in treating solid tumors but is limited in PC therapy due to unclear targets and mechanisms. This study investigated the transport mechanisms and therapeutic efficacy of HSA-ATO in PC cells with different MUC4 mutation statuses. Results revealed improved penetration of ATO into PC tumors through conjugated with HSA. However, MUC4 mutation significantly affected treatment sensitivity and HSA-ATO uptake both in vitro and in vivo. Mutant MUC4 cells exhibited over ten times higher IC50 for HSA-ATO and approximately half the uptake compared to wildtype cells. Further research demonstrated that ALPL activation by HSA-ATO enhanced transcytosis in wildtype MUC4 PC cells but not in mutant MUC4 cells, leading to impaired uptake and weaker antitumor effects. Reprogramming the transport process holds potential for enhancing albumin conjugate efficacy in PC patients with different MUC4 mutation statuses, paving the way for stratified treatment using these delivery vehicles.


Assuntos
Fosfatase Alcalina , Neoplasias Pancreáticas , Humanos , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Mucina-4/genética , Mucina-4/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Albumina Sérica Humana/uso terapêutico , Transcitose , Linhagem Celular Tumoral
5.
Clin Transl Med ; 13(12): e1500, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38037549

RESUMO

BACKGROUND: Inhibition of CDK7, a potent transcription regulator, may bring new hope for treating pancreatic ductal adenocarcinoma (PDAC), which is featured by large genetic heterogeneity and abundant KRAS mutations. This investigation aimed at exploring the discrepant efficacies of THZ1, a small-molecule covalent CDK7 inhibitor, on PDACs with different KRAS mutations and the underlying mechanisms. METHODS: Associations of CDK7 expression with survival by KRAS mutations were first assessed. Effects of THZ1 on PDAC by different KRAS mutations were then investigated in vitro and in vivo. Moreover, the effects of THZ1 on gene transcription and phosphorylation of RNA polymerase II (RNAPOLII) in different KRAS mutant PDACs were assessed, and the effect of THZ1 on super-enhancer activity was evaluated using chromatin immunoprecipitation sequencing. Lastly, the effects of THZ1 on the binding of H3K27ac to PIK3CA and on the PI3K/AKT/mTOR signalling were analysed. RESULTS: High CDK7 expression was significantly linked to worse survival within PDAC patients carrying KRAS-G12V mutation but not in those with KRAS-G12D mutation. The apoptosis-inducing effect of THZ1 was markedly stronger in KRAS-G12V PDAC than KRAS-G12D cancer. THZ1 significantly inhibited the growth of xenograft tumour with KRAS-G12V mutation, and the inhibition was markedly stronger than for KRAS-G12D tumour. In mini-cell-derived xenograft (CDX) models, THZ1 significantly suppressed KRAS-G12V PDAC but not KRAS-G12D cancer. THZ1 significantly suppressed the phosphorylation of RNAPOLII, and this effect was stronger in KRAS-G12V PDAC (especially at ser5). KRAS-G12V PDAC had more H3K27ac-binding super-enhancers, and the inhibition of THZ1 on super-enhancer activity was also stronger in KRAS-G12V PDAC. Furthermore, THZ1 significantly weakened the binding of H3K27ac to PIK3CA in KRAS-G12V PDAC. THZ1 significantly suppressed the PI3K/AKT/mTOR pathway and its downstream markers, and this effect was stronger in KRAS-G12V cells. CONCLUSIONS: In this hypothesis-generating study, THZ1 might selectively inhibit certain PDACs with KRAS-G12V mutation more potently compared with some other PDACs with KRAS-G12D mutation, which might be associated with its effect on super-enhancer activity and the PI3K/AKT/mTOR signalling. Our findings might offer novel key clues for the precise management of PDAC and important evidence for future targeted trial design. HIGHLIGHTS: THZ1 had a stronger effect on PDAC-bearing KRAS-G12V mutation than G12D mutation. Suppressive effect of THZ1 on phosphorylation of RNAPOLII was stronger in KRAS-G12V than KRAS-G12D PDAC. Inhibition of THZ1 on super-enhancer activity and H3K27ac binding to PIK3CA was stronger in KRAS-G12V PDAC. Suppressive effect of THZ1 on PI3K/AKT/mTOR pathway was stronger in KRAS-G12V PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Mutação/genética , Quinases Ciclina-Dependentes/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pancreáticas
6.
ACS Appl Mater Interfaces ; 15(50): 58166-58180, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079631

RESUMO

Calcium phosphate-based biomineralized biomaterials have broad application prospects. However, the immune response and foreign body reactions elicited by biomineralized materials have drawn substantial attention recently, contrary to the immune microenvironment optimization concept. Therefore, it is important to clarify the immunomodulation properties of biomineralized materials. Herein, we prepared the biomineralized collagen matrix (BCM) and screened the key immunomodulation factor carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) nanocomplex. The immunomodulation effect of the BCM was investigated in vitro and in vivo. The BCM triggered evident inflammatory responses and cascade foreign body reactions by releasing the CMC/ACP nanocomplex, which activated the potential TLR4-MAPK/NF-κB pathway, compromising the collagen matrix biocompatibility. By contrast, blocking the CMC/ACP nanocomplex release via the blood assimilation process of the BCM mitigated the inflammation and foreign body reactions, enhancing biocompatibility. Hence, the immunomodulation of the BCM was orchestrated by the balance between the CMC/ACP nanocomplex and the blood assimilation process. Controlling the release of the CMC/ACP nanocomplex to accord the biological effects of ACP with the temporal regenerative demands is key to developing advanced biomineralized materials.


Assuntos
Colágeno , Corpos Estranhos , Humanos , Materiais Biocompatíveis/farmacologia , NF-kappa B , Imunidade , Fosfatos de Cálcio
7.
Biomed Mater ; 18(5)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37604162

RESUMO

As one of the key factors influencing the outcome of guided bone regeneration, the currently used xenografts possess insufficient capability in osteogenesis. With the aim of improving the osteogenic performance of xenografts, porcine bone-derived hydroxyapatite (PHA) was prepared and subsequently coated by magnesium-doped nano hydroxyapatite (nMgHA, 10%, 20%, and 30% of Mg/Ca + Mg) through a straightforward and cost-efficient approach. The physiochemical and biological properties of nMgHA/PHAs were examinedin vitroandin vivo. The inherent three-dimensional (3D) porous framework with the average pore size of 300 µm was well preserved in nMgHA/PHAs. Meanwhile, excess magnesium released from the so-called 'surface pool' of PHA was verified. In contrast, slower release of magnesium at lower concentrations was detected for nMgHA/PHAs. Significantly more newly-formed bone and microvessels were observed in 20%nMgHA/PHA than the other specimens. With the limitations of the present study, it could be concluded that PHA coated by 20%nMgHA may have the optimized osteogenic performance due to the elimination of the excess magnesium from the 'surface pool', the preservation of the inherent 3D porous framework with the favorable pore size, and the release of magnesium at an appropriate concentration that possessed osteoimmunomodulatory effects on macrophages.


Assuntos
Magnésio , Osteogênese , Humanos , Suínos , Animais , Xenoenxertos , Regeneração Óssea , Durapatita
8.
Clin Implant Dent Relat Res ; 25(5): 948-959, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37259774

RESUMO

OBJECTIVE: The objective of this study was to evaluate the peri-implant soft tissue and marginal bone loss (MBL) around implants with platform-switching and internal conical connection placed at crestal and subcrestal levels in posterior areas. MATERIALS AND METHODS: Nineteen partially edentulous patients with at least two adjacent missing teeth in posterior areas unilaterally or bilaterally were included. Forty-two implants were placed randomly at the crestal or subcrestal (1 mm) level in a split-mouth design. Implant-supported fixed dental prostheses with screw retention were delivered after 4 months of healing. Clinical and radiological measurements were performed at implant placement (T0), restoration delivery (T1), and 1-year follow-up after loading (T2). MBL was calculated as the change in distance from the implant-abutment interface to the first radiographically visible bone-implant contact. A repeated-measures mixed ANOVA followed by a paired Student's t-test with the Bonferroni correction was used for statistical analysis. p < 0.05 was considered statistically significant. RESULTS: Eighteen patients with thirty-eight implants completed the study at T2. The MBL was lower in the subcrestal group than in the crestal group (0.04 ± 0.08 vs. 0.17 ± 0.17 mm, p = 0.004). The peri-implant probing depth (PD) was 2.31 ± 0.48 mm in the subcrestal group and 1.92 ± 0.43 mm in the crestal group; this difference was statistically significant (p = 0.002). Intragroup comparison showed no significant differences in MBL, or PD around the crestal group and subcrestal group from T1 to T2. CONCLUSION: After 1 year of functional loading, subcrestal placement of implants with platform-switching and internal conical connection showed lower MBL and was associated with greater PD and peri-implant soft tissue height than implants placed at the crestal level.


Assuntos
Perda do Osso Alveolar , Implantes Dentários , Humanos , Implantação Dentária Endóssea/métodos , Perda do Osso Alveolar/diagnóstico por imagem , Face
9.
J Cancer Res Clin Oncol ; 149(13): 11041-11055, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37338641

RESUMO

BACKGROUND AND AIM: According to previous reports, GTPase of immunity-associated protein 6 (GIMAP6) is essential for autophagy. However, it is unclear how GIMAP6 affects the development and tumor immunity of lung adenocarcinoma (LUAD). METHODS: In the present study, the role of GIMAP6 in vivo and in vitro was examined using reverse transcription-quantitative PCR, western blotting, and Cell Counting Kit-8, colony formation and Transwell assays. Datasets from The Cancer Genome Atlas and Genotype-Tissue Expression databases were thoroughly analyzed using R software. A nomogram was created using GIMAP6 and prognostic characteristics. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were applied to explore the potential mechanism of GIMAP6 in lung cancer. The link between GIMAP6 and the immunological landscape was studied using single-cell RNA sequencing datasets from Tumor Immune Estimation Resource (TIMER) 2.0 and Tumor Immune Single-cell Hub. RESULTS: Patients with high GIMAP6 expression had improved overall and disease-specific survival compared with those patients with low GIMAP6 expression. According to the receiver operating characteristic and calibration curve, the nomogram based on T stage, N stage and GIMAP6 had predictive value for prognosis. According to functional enrichment analysis, GIMAP6 was primarily involved in T-cell receptor signaling pathway, chemokine signaling pathway, cytokine and cytokine receptor interaction. GIMAP6 was shown to be favorably linked with the infiltration of immune cells and immune-related molecules, including cytotoxic T-lymphocyte associated protein 4, programmed death-ligand 1, and T cell immunoreceptor with Ig and ITIM domains, by single-cell sequencing and TIMER2.0 analysis. The role of GIMAP6 in lung cancer cell proliferation, invasion, migration and immunity was experimentally verified. CONCLUSION: These findings confirmed that GIMAP6 was an effective prognostic molecule that was involved in the regulation of the immune microenvironment of LUAD, and may become a predictor for the efficacy of immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , GTP Fosfo-Hidrolases , Prognóstico , Biomarcadores , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
10.
Front Genet ; 14: 1160915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077542

RESUMO

Background: Lung adenocarcinoma (LUAD) is an aggressive disease of heterogeneous characteristics with poor prognosis and high mortality. Pyroptosis, a newly uncovered type of programmed cell death with an inflammatory nature, has been determined to hold substantial importance in the progression of tumors. Despite this, the knowledge about pyroptosis-related genes (PRGs) in LUAD is limited. This study aimed to develop and validate a prognostic signature for LUAD based on PRGs. Methods: In this research, gene expression information from The Cancer Genome Atlas (TCGA) served as the training cohort and data from Gene Expression Omnibus (GEO) was utilized as the validation cohort. PRGs list was taken from the Molecular Signatures Database (MSigDB) and previous studies. Univariate Cox regression and Lasso analysis were then conducted to identify prognostic PRGs and develop a LUAD prognostic signature. The Kaplan-Meier method, univariate and multivariate Cox regression models were employed to assess the independent prognostic value and forecasting accuracy of the pyroptosis-related prognostic signature. The correlation between prognostic signature and immune infiltrating was analyzed to examine the role in tumor diagnosis and immunotherapy. Further, RNA-seq as well as quantitative real-time polymerase chain reaction (qRT-PCR) analysis in separate data sets was applied in order to validate the potential biomarkers for LUAD. Results: A novel prognostic signature based on 8 PRGs (BAK1, CHMP2A, CYCS, IL1A, CASP9, NLRC4, NLRP1, and NOD1) was established to predict the survival of LUAD. The prognostic signature proved to be an independent prognostic factor of LUAD with satisfactory sensitivity and specificity in the training and validation sets. High-risk scores subgroups in the prognostic signature were significantly associated with advanced tumor stage, poor prognosis, less immune cell infiltration, and immune function deficiency. RNA sequencing and qRT-PCR analysis confirmed that the expression of CHMP2A and NLRC4 could be used as biomarkers for LUAD. Conclusion: We have successfully developed a prognostic signature consisting of eight PRGs that providing a novel perspective on predicting prognosis, assessing infiltration levels of tumor immune cells, and determining the outcomes of immunotherapy for LUAD.

11.
Cancer Pathog Ther ; 1(4): 238-252, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38327603

RESUMO

Background: Nucleophosmin/nucleoplasmin 3 (NPM3), a member of the NPM protein family, is widely expressed in various human tissues. Although previous studies identified elevated NPM3 expression in several cancers, a systematic pan-cancer analysis remains lacking. In this study, we conducted a comprehensive analysis of NPM3 to determine its role in tumorigenesis and tumor development. Methods: Using data from The Cancer Genome Atlas (TCGA) and various bioinformatics analysis tools, we conducted a pan-cancer analysis of NPM3. Additionally, we collected gene expression and clinical data from 890 patients with lung adenocarcinoma (LUAD) from TCGA and the Gene Expression Omnibus database. We performed Cox regression analyses to explore the independent prognostic value of NPM3 expression in LUAD and plotted a nomogram to predict patient survival. We also used real-time quantitative polymerase chain reaction (RT-qPCR) to examine the expression levels of NPM3 in seven pairs of LUAD and paraneoplastic tissue samples. Results: NPM3 expression was significantly increased in 20 types of cancer and was associated with poor prognosis in five types (P < 0.05). NPM3 expression was negatively correlated with DNA methylation and positively correlated with copy number variation. NPM3 was also significantly associated with immune cell infiltration in various cancers. Cox regression analyses revealed that NPM3 expression could serve as an independent prognostic marker of LUAD. Moreover, our nomogram demonstrated good predictive ability for the prognosis of patients with LUAD. Finally, the high expression of NPM3 in LUAD was verified using RT-qPCR. Conclusion: NPM3 is a promising biomarker for predicting pan-cancer prognosis and immunotherapeutic efficacy.

12.
J Periodontol ; 93(3): 423-434, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34124777

RESUMO

BACKGROUND: Phosphodiesterase-4 (PDE4) has been identified as a valid therapeutic target in several inflammatory diseases. In this study, we assessed PDE4 in gingival tissue from patients with chronic periodontitis and evaluated the therapeutic effects of the PDE4 inhibitor, roflumilast, in an experimental rat model of periodontitis. METHODS: Gingival tissue specimens from 20 healthy subjects and 20 patients with periodontitis were collected, and the mRNA expression levels of PDE4, interleukin (IL)-1ß, and IL-6 were assessed. Ninety rats were divided randomly into three groups (30 per group): non-ligature group, ligature-induced periodontitis group (L), and ligature-induced periodontitis with roflumilast administered group (5 mg/kg/d) (L+R). Rats were euthanized on days 3, 8, and 14. Alveolar bone resorption was analyzed using microcomputed tomography. Inflammation and osteoclast number were analyzed histologically. Finally, the mRNA expression levels of PDE-4, IL-1ß, IL-6, tumor necrosis factor (TNF)-α, and nuclear factor kappa B (NF-κB) were assessed in the rat gingival tissue. RESULTS: The mRNA expression levels of PDE4, IL-1ß, and IL-6 in the gingiva were significantly higher in patients with periodontitis compared with healthy individuals (P <0.05). Alveolar bone loss, degree of inflammation, number of TRAP-positive multinucleated osteoclasts, and mRNA expression levels of IL-1ß, IL-6, TNF-α, NF-κB, and PDE4 in the L+R group were significantly lower than those in the L group (P <0.05). CONCLUSIONS: PDE4 expression was increased in the gingiva of patients with periodontitis. Roflumilast may decrease alveolar bone loss and the expression of inflammatory cytokines in rats with ligature-induced periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Ratos , Perda do Osso Alveolar/metabolismo , Aminopiridinas , Benzamidas , Ciclopropanos , Gengiva/metabolismo , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Periodontite/metabolismo , Ratos Wistar , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Microtomografia por Raio-X
13.
J Prosthodont ; 30(6): 473-480, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33639017

RESUMO

PURPOSE: To evaluate the buccal bone thickness of immediate implant placement with buccal bone augmentation in patients with a thin buccal plate in the esthetic zone. MATERIALS AND METHODS: Eighteen consecutive patients requiring a single tooth replacement in the anterior maxillary zone with a thin plate (<1 mm) were included and received immediate implant placement with narrow-diameter implants. Patients received buccal bone augmentation (both internal and external socket bone grafting) with deproteinized bovine bone mineral (DBBM) and an absorbable membrane. The final restoration was delivered after 8 months. Cone-beam CT scans were performed before surgery (CBCT0), immediately after surgery (CBCT1), at final restoration delivery (CBCT2), and at 1-year follow-up after the final restoration (CBCT3) to evaluate the buccal bone thickness and ridge width. A repeated measures ANOVA and Bonferroni correction for multiple comparisons were applied for statistical analysis of changes within different time points (α = 0.05). RESULTS: Fifteen of the 18 enrolled patients were available for analysis at the 1-year follow-up after final restoration. The mean buccal bone thickness at 2 mm apical to the implant-abutment junction (IAJ-2) were 3.59 mm (range: 3.04-4.58 mm), 2.79 mm (range: 2.25-3.78 mm), and 2.52 mm (range: 1.72-3.36 mm), respectively, at CBCT1, CBCT2, and CBCT3. A statistical significance was observed for buccal bone thickness change between CBCT1 and CBCT2 at IAJ-2 (F = 17.948, p = 0.001). The net gains of the ridge width from CBCT0 to CBCT1, CBCT1 to CBCT2, and CBCT2 to CBCT3 were 1.08 mm, -0.94 mm and -0.04 mm at 4 mm apical to the cementum-enamel junction, respectively. No statistical significance was observed for the change in ridge width from CBCT0 to CBCT3 (F = 10.518, p = 1.000). CONCLUSIONS: Simultaneous buccal bone augmentation may maintain a predictable buccal bone thickness for immediate implant placement in the maxillary anterior sites with a thin buccal plate (<1 mm) at 1-year follow-up after final restoration.


Assuntos
Aumento do Rebordo Alveolar , Implantes Dentários para Um Único Dente , Implantes Dentários , Animais , Bovinos , Implantação Dentária Endóssea , Estética Dentária , Seguimentos , Humanos , Maxila/diagnóstico por imagem , Maxila/cirurgia , Alvéolo Dental/cirurgia , Zigoma
14.
Am J Transl Res ; 12(6): 2473-2487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655785

RESUMO

PURPOSE: The aim of this study was to evaluate the effects of porcine hydroxyapatite (PHA) and fluorinated porcine hydroxyapatite (FPHA) applied concomitantly with collagen membranes (CMs) on bone regeneration in mandibular lateral ridge defects. MATERIALS AND METHODS: Mandibular third premolar to second molar were extracted bilaterally in six male beagle dogs. After 8 weeks of healing, six standardized box-shaped defects were bilaterally created at the buccal aspect of the mandibles and randomly allocated in a split-mouth design to the (i) PHA, (ii) FPHA or (iii) blank group and covered with CMs. After 12 weeks, biopsies of the defects were obtained for micro-computed tomography (micro-CT) evaluation and histological analysis. RESULTS: Both FPHA and PHA promoted new bone formation and showed a better ridge width maintenance capacity than the blank control treatment. The micro-CT evaluation showed that the bone volume fraction (BV/TV) in the FPHA group was significantly higher than that in the PHA group. The trabecular number (Tb.N) in the FPHA group was significantly higher than that in the blank group. Histomorphometric analysis revealed a significantly larger area and higher ratio of newly formed bone in the FPHA group than those in the PHA group. The ratio of non-mineralized tissue in the FPHA group was significantly lower than that in the PHA group. No significant difference in the amount of residual materials was found between the FPHA and PHA groups. CONCLUSIONS: FPHA achieved better ridge width maintenance and bone regeneration outcomes than PHA as a bone substitute in lateral ridge augmentation.

15.
J Mater Chem B ; 8(33): 7511-7520, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32677632

RESUMO

Selective isolation of circulating tumor cells (CTCs) from blood provides a non-invasive avenue for the diagnosis, prognosis and personalized treatment for patients with cancer. The specific capture of CTCs is conventionally based on the immunoaffinity recognition between antibody and receptor on cell membranes. However, using a traditional antibody for high-efficiency isolation of CTCs remains a challenge due to the limited loading capacity of the large antibodies on material surfaces. Herein, using a small-sized nanobody (Nb), we developed a widely applicable strategy to construct reversible site-specifically immobilized Nb surfaces for the capture and release of epidermoid cancer cell line A431 cells. Coordination interaction between the histidine tag (His-tag) of the nanobody (Nb) and Ni2+ ions that chelated to the NTA-modified poly(2-hydroxyethyl methacrylate) (PHEMA) brushes was used to achieve site-specific immobilization of EGFR Nb (PHEMA-aEGFR surfaces). The high-density immobilized nanobody possessing maximized activity resulted in the high-efficiency capture of 81% rare A431 cells within just 30 min, showing a higher capture yield and shorter capture time compared with that achieved by the conventional antibody immobilized on the flat surface. Additionally, the PHEMA-aEGFR surfaces exhibited low capture limit (1 cell mL-1), cytocompatibility for captured cells, as well as negligible non-specific adhesion of PBMCs. With a one-step treatment using imidazole for competitive coordination, 86% of the captured cells were effectively released. This multifunctional and dynamic site-specifically immobilized nanobody strategy paves a new path in the development of materials and instruments for the high-efficiency capture and release of rare cells at a low cost.


Assuntos
Anticorpos Imobilizados/química , Separação Celular/métodos , Anticorpos de Domínio Único/química , Anticorpos Imobilizados/imunologia , Linhagem Celular Tumoral , Receptores ErbB/imunologia , Humanos , Anticorpos de Domínio Único/imunologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...